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Project report: Efficient simulation and novel modeling by using generic 

three-dimensional exact solutions to analyze transport dynamics in 

turbulent vortices 

I.    INTRODUCTION 

Flow-separation from a rigid body is an unsolved problem in theoretical fluid mechanics in spite 

of the maturity of this field. Classical boundary-layer theory cannot provide a complete description 

and quantitative estimates for such phenomenon. For example, it is not possible to determine the 

vortical structures in separated flows by using boundary-layer equation in the wake region [1-7]. 

Similarly, there is no easy way to predict the strength of the eddies without extensive computations 

[8, 9]. Unfortunately, subsequent theoretical developments, like triple-deck theory [10-13] or other 

viscous-inviscid analysis [14—21] have not been able to overcome these deficiencies. 

The lack of mathematical understanding of flow-separation is a severe hindrance in aerody- 

namic analysis. In absence of an analytical method, the brute force computation is the only way to 

simulate a realistic aerodynamic system [22-28]. For example, the lift and the drag on an object in 

separated flow can be computed only by numerically solving the full Navier-Stokes equation over 

a large domain. This is potentially an inefficient approach. Despite increase in computer speed 

over the years, such inefficiency restricts aviation technology from transformative changes which 

require exploration of hundreds of thousand cases over wide variety of design parameters. 

Recent aspirations in aviation science demand a remedy from these limitations. A fuel-efficient 

and noiseless aviation device based on bird-like flight can produce ten times more lift to drag ratio 

[29-33], and can be immensely important for surveillance and transport purposes. This technology 

is an active topic of research in aerodynamics. However, such bio-inspired designs require vast ex- 

ploration over geometric shapes and sequences of motion to maximize lift to drag ratio. Moreover, 

to enhance lift, bird-wings allow cross-flow through it from high pressure to low pressure region 

during a selective period of the motion [34, 35]. Such mechanism is only possible when a perfo- 

rated aerodynamic body is considered. The optimum design of perforated wings can be possible 

only if millions of possibilities are accounted for. Existing numerical methods are not adequate for 

this purpose. Our recent discoveries (please see III—VI) show that this issue can be addressed by 

a new theory and a fast algorithm where the computation cost is reduced by orders of magnitudes. 
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II.    BACKGROUND 

Aerodynamics is an active field of research for over a century. Modern aerodynamics originat- 

ing from Prandlt's boundary-layer theory acquired maturity over a long time by many theoretical 

[36-39], experimental [40—45] and numerical [46-53] studies. The detailed description of these 

works is beyond the scope of the project. Hence, in the subsequent text, we focus on existing 

theories and computations directly relevant to our investigation on flow-separation. 

The rudimentary insight into flow-separation was first provided by Prandlt who suggested that 

boundary-layer separates from a point where wall-shear stress vanishes due to the action of an 

adverse pressure gradient. Unfortunately, several numerical studies [54-57] reported difficulties in 

obtaining the boundary-layer solution near the separation point characterized according to Pran- 

dlt. Later, these difficulties were attributed to Goldstein singularity which has been the focus of 

numerous mathematical investigations [58-62]. 

The aforementioned studies indicate peculiar flow-behavior at the point of separation. A num- 

ber of theories like the triple-deck theory [10-13] can account for the characteristics near the sep- 

aration point. Also, to this end, other viscous-inviscid models have been used [14-21]. However, 

though these theories are effective in explaining the flow-features in the vicinity of the separation 

point, they cannot efficiently compute the global velocity field in the entire flow-domain. 

In the past, various aspects of structures in separated flows have also been analyzed [63, 64]. 

For example, Batchelor proved the approximate uniformity of the vorticity in recirculating wake- 

structures and proposed a solution scheme based on that. All these studies, however, failed to 

provide a universal aerodynamic algorithm for global flow-solution with separated boundary-layer. 

In absence of a complete mathematical theory of flow-separation, aerodynamic computations 

are generally done by solving full Navier-Stokes equation [65-70] with standard numerical tech- 

niques. These schemes include traditional approaches like finite element [71-75] and finite differ- 

ence methods [76-82] as well as efficient new methodologies like vortex method[83-96] or spectral 

method[97-107] which can simulate vortical structures in separated fields particularly well. 

The majority of these schemes generally require at least a few minutes to solve for the flow- 

field and to find lift to drag ratio on a particular aerodynamic body. Though the computation 

time seems impressive, the current state of the art is inadequate for exploration of new designs 

with numerous design parameters. Such endeavor needs consideration of hundreds of thousand 

possibilities which cannot be taken into account without drastic decrease in individual simulation- 

time. Our mathematical theory for flow-separation serves this purpose by providing an algorithm 

which takes an estimated 0.1 second for solving similar problems with similar accuracy. 

III.    ALTERNATIVE BOUNDARY-LAYER THEORY FOR SEPARATED FLOW 

In the classical higher order boundary-layer theory, the flow-solution is obtained by using a 

perturbative method. Considering Re as Reynolds number and e = l/y/Re a small parameter, the 



velocity field v around a solid body is represented by far-field and inner expansions: 

V = UQ (r)+eu^ (r)+... (far-field expansion),    v = UQ'(/,«/e)+eu^(/,«/e)+-• • (inner expansion). (1) 

where r is the position, and /, n are the coordinates along and normal to the solid surface. The 

superscript 'pf corresponds to potential flow for the far-field velocity whereas 'bl' stands for 

boundary-layer solution associated with the solution near the solid surface. 

In the subsequent classical analysis, first UQ is evaluated as potential field with no-penetration at 

the interface. Then boundary-layer equation is solved to find UQ
1
 which is zero at the solid surface 

and matches with UQ in /-direction far from the body. Next, u\ is obtained by assuming potential 

flow again which properly matches with UQ in ^-direction. This means, unlike for UQ , the interface 

is not considered impermeable for u'j' . After computing u'j1 , higher order boundary-layer equation 

is solved to calculate u'j'1 using appropriate matching conditions. According to existing theory as 

described in any relevant text book, this is how the flow is analyzed by successive improvements. 

Thus, in the classical theory, the outer field is always potential with an error near the solid 

surface manifested by the slip velocity. In the new theory, we have proposed a new kind of ex- 

pansion which is applicable in both boundary-layer and far-field, and is capable of reducing the 

error in the entire solution upon addition of higher order terms. Such improved solution provides 

a mathematical description of separated flow by introduction of proper vorticity in the domain. 

It is to be noted that contrary to the common knowledge about leading order u[], the higher order 

far-fields in classical theory do not satisfy impermeability condition at the solid surface. Hence, 

for these fields, the object-boundary acts as an inlet allowing small but non-zero fluid-flux in the 

flow-domain. This fact gives us an opportunity to introduce vorticity in the flow-solution even if 

the flow is inviscid in the first approximation. Our central idea is to consider a vortical field valid 

throughout the entire domain by introducing strong but localized vorticity which is transported 

by the small fluid-flux at the solid-surface. We evaluate the fluid-flux from the boundary-layer 

solution and determine the vorticity-flux by ensuring substantial reduction in the slip velocity. 

Accordingly, we consider a slightly different expansion which is valid for the entire domain 

v = u0(r) + e(uPf+u,) + e2(uf+u2)---. (2) 

Here localized vorticity near the interface is expressed by fast-decaying w, = er-V x u,, so that 

ez • V x v = [«o(r/e) + eft)i (r/e) + • • -]/e. (3) 

It is to be noted that uo is exactly the same as UQ far from the body and can match with u^1 if <w,'s 

are properly derived. Hence, our key step is to describe the a),'s which are very localized but much 

larger than unity (~ 1/e) so that, if integrated, give tangential velocity of the order 1. 

First we focus on (Oo by considering the leading order vorticity transport equation in e 

u0-Vc«o = 0, =» VV=0*)(V)> (4) 



where y/ is the stream-function corresponding to uo- Our strategy is to find the expression of (Oo( \\f) 

explicitly so that the function ensures a reduction in slip-velocity from the order unity to the order 

e. This can be achieved by establishing a functional relation between I// and the coordinate / where 

the expression for the normal flux /(/) is designed to nullify the normal flux produced by UQ
1
: 

e/(/) = u?(/.-)-A-^uPf(/,0)-i =• ¥=-ejf(l)dl = eI(l),     (5) 

where n, 1 is the unit vector along n, I. As /(/) is always positive, /(/) is a monotonous function 

and eq.5 can be inverted as / = g( y//e). Hence, we can construct the explicit expression for (OQ( I/A) 

from the /-dependent slip-velocity associated with u[j at n — 0, 

ft)o(V/) = ~^[i'Uof(g(v//e)'0)]2- (6) 

An inviscid but vortical field like uo as defined by eqs.2 and 6 exhibits interfacial slip which is of 

the order e instead of unity. The exact mathematical proof behind this conclusion is too elaborate 

for present discussion. However, one can physically justify it by perceiving that a right strength of 

vorticity can nullify the slip as well as can produce the vortical structures in the wake region. 

For higher order u,, we need to find the next order potential field u^ by nullifying order £ normal 

flux in eq.5. This potential field has an order e slip-velocity which is incorporated in higher order 

boundary-layer equation to obtain u^1. Next, one has to solve the following vorticity equation 

i-l 

uo • Vo),. + «f + u,) • Vwo = - X(uf+uj) • V(oH + V2<o,_, (7) 
7=1 

and enforce the relations for corresponding normal fluid-flux and vorticity-flux to determine U\. 

Similar calculations can also be used to compute the solutions for U2, U3 etc. 

Hence, efficient computation of u? , u^1 and u, can lead to a fast aerodynamic algorithm. Among 

these fields, the potential flow u^ is easiest to solve. However, fast evaluation of u,bl and u, is non- 

trivial. Fortunately, we derived a new boundary-layer solution for a?1, and developed a simple 

one-dimensional evolution scheme for u,. We discuss such cost-reducing innovations next. 

IV.    NEW SEMIANALYTICAL SOLUTION FOR THE BOUNDARY-LAYER EQUATION 

In a surprising discovery, we have recently solved the well-known boundary-layer equation with 

a novel analytical approach reducing the simulation cost substantially. By eliminating the compo- 

nent of UQ
1
 along n, we transform the common boundary-layer equation into a new convenient form 

with separable operator in / and n describing the streamwise component of UQ
1 

&   *s/ww^ (8) 
an Jo uj 

dui_       _«(0-4?      du,  f"g(l) 
dl 



Here u/ and g are the velocity and the free-stream pressure-gradient along /. 
In the next step, we consider an expansion of u/ in terms of fast-decaying functions Fj 

ui(l,n) = Ur(l)+Fl(l,n)+F2(l, n)..., (9) 

where each Fj decreases quickly with increasing n representing the approach of M/ towards its free- 
stream value UJ°(l) = I • UQ (/, 0). The decay functions satisfy the following converging criterion 

Fi/Fi-x = n(l,n) < 1 for n > 0. (10) 

We derive a hierarchical set of equations for Fj. Though the original boundary-layer equation is 
non-linear, the equations for Fj are linear with explicit source terms S, dependent on Fj with j < i, 

LF|=0, lFi = Si(Fl,F2 F/_i)        for        I>1. (11) 

Here L is a linear operate which depends on the free-stream velocity UJ°(l) 

dr__„,    d2 „     dur d VF=m[Uril)F]-^F-n-^TnF. (12) 

The above equation is valid for any geometry of the aerodynamic body which influences operator 
L by dictating the functional form of the free-stream velocity UJ°(l). 

We have generalized the concept of similarity solution to derive an expression for F\ by solving 
eq. 11 with i = 1. Assuming F\ cancels the free-stream velocity at the interface n = 0, we find that 

*<<•») = -^/^B*[»MU)]*A. (l3) 

Here, Erfc is complementary error function and s(l,X) is a bivariant scaling function 

I 2 

s(l,k) = fkmM (14) 
t/~(/) 

which is a major feature of our generalized similarity solution. 
The derived solution in eq. 13 circumvents the problem posed by Goldstein singularity due to 

the inherent inclusion of essential singularities in general similarity approach. Our preliminary 
findings support this fact. Hence, the solution is physical in the entire flow-domain for any UJ"(l) 
representing any aerodynamic geometry. Moreover, from the expressions for F\ and the source 
term S,, the satisfaction of the convergence criteria in eq. 10 can be mathematically proved. Our re- 
sults show that even if we consider only Uf(l) and F\ (/, n) in the expansion of w/ (eq.9) neglecting 
the other f}'s, the obtained field can have good agreement with known boundary-layer results. For 
example, in Fig. 1, we consider flow over a flat plate, and present Blasius's profile along with the 
one from our solution demonstrating a good match. Similarly, in Fig.2, we present our boundary- 
layer solution for flow past a cylinder. The separation point indicated by our solution agrees with 
the experimental observations. Also, the flow-profile and the shear-stress at the cylinder surface 
coincide with the corresponding known results. These solutions can be further improved by in- 
cluding Fi^Fs ... obtained by very fast predictor-corrector scheme along / direction. 
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Fig. 1: Preliminary validation for our boundary-layer 
solution in IV by considering flow over a flat plate. 
The solid line is for the presented approximation in 
eq.9 with the first two expansion terms normalized by 
the free-stream velocity. It is plotted as a function of 
the scaled distance in the normal direction. The dash- 
line shows the exact Blasius solution. The small error 
between these two curves implies a very fast conver- 
gence for the series in eq.9. Thus, we can extrapolate 
that the fast solution technique for the boundary-layer 
equation described in IV will also be effective for 
any geometry where analytical result is not available. 
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Fig.2: Preliminary validation for our boundary-layer solution in IV by considering flow past a cylinder, 
(a) As in Fig.l, we take into account only two terms Ur{l) and F\ in eq.9 disregarding F2,Fj..., and plot 
the normalized field as function of scaled normal distance for different angle 6 measured from the leading 
edge with values 20° (dashed), 40° (dotted), 60°(short-dash), 80° (dash-dot), 100° (dash-dot-dot). The solid 
line represents 108.8°, the known point of separation where the computed velocity-gradient at the wall is 
very small. The approximate analytical solution is in very good agreement with existing results [108] imp- 
lying fast convergence of the series in eq.9. (b) The solid line shows the non-dimensional wall shear- 
stress as function of 6 for only F\, whereas the '+' points are for known stress-values [108]. The two sets 
of results have striking agreement. We overpredict the separation point only by 2° which can be corrected 
by adding Z^,/^... 

V.    SCHEME TO SOLVE VORTICAL FIELD 

The other components of our algorithmic innovation is to formulate an efficient technique to 

evaluate the vortical flow-field u,. For brevity, here we only focus on evaluation of uo. 

For efficient computation of uo, the domain is divided into region of non-zero vorticity and 

region of potential flow. The two distinct regions are separated by a streamline of zero vorticity 

identified by superposing potential fields UQ and u^ . A streamline originates from the upstream 

stagnation point, separates from the body, and continues to infinity in the downstream, when a 

field like u'j' with non-zero wall-flux is superposed on UQ. Such streamline contains zero-vorticity 

due to the flow-behavior at the stagnation point. In our opinion, the zero-vorticity line defines the 
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Fig.3:Vortical inviscid flow due to incoming vorticity in an expansion chamber with different inlet-widths 
computed by the outlined evolution scheme in V. 
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Fig.4: Same as Fig.3 only inlet velocity profile is different instead of inlet width. 

wake region by demarcating the vortical and potential field. We compute Uo only in the vortical 

subdomain because rest of the flow is simple superposition of u[j and u^ . Due to the property of 

zero-vorticity streamline, there is smooth transition between the potential and vortical regions. 

Once the zero-vorticity streamline separating the vortical and potential region is identified, we 

obtain UQ by determining the velocity on the streamlines and their shape in the vortical subdomain. 

Due to the wall-flux in u^ , all streamlines in vortical subdomain originates from the interface and 

continues to infinity in the downstream. One can form evolution equations along the streamlines 

to find their curvature and velocity by exploiting known fluid-flux and vorticity-flux given by eqs.5 

and 6, respectively. Thus, this simple and highly efficient scheme can solve uo very quickly. 

In Figs. 3 and 4, we present a test problem which demonstrates the vortical structures in inviscid 

flow constructed by the aforementioned scheme. Here, instead of eq.6, we assume a hypothetical 

linear relation between the vorticity and the stream function. We construct the vortical field inside 

a rectangular expansion cavity. Though the system only corresponds to a mathematical problem 

without any significant physical interpretation, one can see the similarity between circulating vor- 

tices captured by our algorithm and eddies in the wake of a separated flow. 



VI.    BRIEF DESCRIPTION OF THE AERODYNAMIC ALGORITHM AND COST 

ESTIMATION 

We build the fast aerodynamic algorithm based on 1) the new flow-separation theory, 2) the 

semianalytical boundary-layer solution, and 3) the evaluation scheme for the vortical field. The 

approach works for any geometry of the aerodynamic body. Only requirement for the method is 

availability of the leading order potential field UQ which is easy to determine for a given geometry. 

When UQ is known, the fast method finds the flow-field and the wall-stresses as well as the lift 

and drag on the body in a six-step computation. These six steps are described below. 

• Step /:- We determine the free-stream velocity UJ°(l) for the tangential velocity u\ in boundary- 

layer from UQ . Then, we use the semianalytical method outlined in IV to find the function F\ from 

eq.13 and other functions Fi,F->,,... by solving eq.l 1 with Euler predictor-corrector method. As a 

result, Uj can be evaluated from the expansion eq.9. 

• Step 2:- The normal component of the boundary-layer velocity is obtained from u/. Then, the 

interfacial fluid-flux and vorticity-flux as in eqs.5 and 6 are calculated using the solution for UQ
1
. 

• Step 3:- We obtain the higher order potential field u^ which corresponds to the wall fluid-flux. 

• Step 4- The evaluated fluid-flux and vorticity-flux at the wall as well as the superposed potential 

fields UQ and u^ are used in the scheme outlined in V to compute Uo. 

• Step 5:- We combine uo with u^ to nullify the normal fluid-flux at the solid surface. 

• Step 6- The previous step introduces an interfacial slip-velocity of the order e. This slip-velocity 

can be considered as the free-stream velocity for the higher order boundary-layer field u^1. Hence, 

the step 1 to 5 can be repeated to solve for the next order fields in e. Thus, one can continue until 

an arbitrary order and achieve an arbitrary accuracy in the process. 

Among steps 1 to 5, only time consuming ones are step 1 and 4. If we want to limit the relative 

simulation-error to less than 1%, we have to include F\, Fi, FT, and F4 in step 1. The computation 

cost for F\ is at least ten times more than other F/'s. In our analysis with a 2.4GHz machine, we 

have checked the time for evaluation of F\ to be 0.02second. Our estimate of simulation time 

for next four fj's together is O.Olsecond. Also, we have seen that step 4 takes approximately 

0.01 second. Therefore, we can conclude that evaluation of velocity field of certain order in e 

takes less than 0.05second. For less than 1% error, first two to three leading order fields need to 

be computed. Thus, the fast aerodynamic scheme can provide a very accurate solution in about 

0.1 second. Any other numerical method takes at least more than a minute to solve the equivalent 

problem. Hence, the hundredfold increase in efficiency can be utilized for exploration of new 

designs and study of new aerodynamic systems. 

VII.    SUMMARY AND CONCLUSION 

In this project, we have formulated an alternative boundary-layer theory. This new analysis will 

be able to mathematically describe flow-separation unlike the classical theory. 



In our research, we have partially validate the developed theory. For example, we can reproduce 
Blasius profile for a boundary-layer on a flat plate. Similarly, we can accurately analyze separated 
flow from a cylinder, and find the correct wall shear-stress. We were also able to determine the 
point of separation where the wall shear-stress vanishes. Hence, we can conclude that our approach 
has considerable potential to account for flow-separation. 

The effective description of separated flow can potentially lead to a fast simulation-algorithm 
for aerodynamic computation. Our estimate predicts that this semianalytical scheme will compute 
the lift and drag on an aerodynamic body in less than 0. lsec with less than 1% relative error. This 
is more than hundredfold increase over current simulation-efficiency 

The enhanced efficiency will enable hitherto impossible exploration of new designs for maxi- 
mization of the lift to drag ratio. In the future, this will revolutionize aviation technology by the 
development of bio-inspired aviation mechanism and other novel systems. Such improvements 
will help in energy-savings and pollution control by reducing fuel consumptions. 

We know that more work should be done on this very powerful theory which we have developed 
during the funding period of eight months from April 2008 to November 2008. We hope to receive 
further funding in the future to continue this research to its proper conclusion. 
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